Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(10): 102379, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973513

RESUMO

Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) regulates metabolism, cell proliferation, and cell survival. mTORC2 activity is stimulated by growth factors, and it phosphorylates the hydrophobic motif site of the AGC kinases AKT, SGK, and PKC. However, the proteins that interact with mTORC2 to control its activity and localization remain poorly defined. To identify mTORC2-interacting proteins in living cells, we tagged endogenous RICTOR, an essential mTORC2 subunit, with the modified BirA biotin ligase BioID2 and performed live-cell proximity labeling. We identified 215 RICTOR-proximal proteins, including proteins with known mTORC2 pathway interactions, and 135 proteins (63%) not previously linked to mTORC2 signaling, including nuclear and cytoplasmic proteins. Our imaging and cell fractionation experiments suggest nearly 30% of RICTOR is in the nucleus, hinting at potential nuclear functions. We also identified 29 interactors containing RICTOR-dependent, insulin-stimulated phosphorylation sites, thus providing insight into mTORC2-dependent insulin signaling dynamics. Finally, we identify the endogenous ADP ribosylation factor 1 (ARF1) GTPase as an mTORC2-interacting protein. Through gain-of-function and loss-of-function studies, we provide functional evidence that ARF1 may negatively regulate mTORC2. In summary, we present a new method of studying endogenous mTORC2, a resource of RICTOR/mTORC2 protein interactions in living cells, and a potential mechanism of mTORC2 regulation by the ARF1 GTPase.


Assuntos
Fator 1 de Ribosilação do ADP , Mapas de Interação de Proteínas , Proteína Companheira de mTOR Insensível à Rapamicina , Serina-Treonina Quinases TOR , Humanos , Fator 1 de Ribosilação do ADP/metabolismo , Insulina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mapeamento de Interação de Proteínas/métodos
2.
Cell Rep ; 36(4): 109459, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320357

RESUMO

Active brown adipose tissue (BAT) consumes copious amounts of glucose, yet how glucose metabolism supports thermogenesis is unclear. By combining transcriptomics, metabolomics, and stable isotope tracing in vivo, we systematically analyze BAT glucose utilization in mice during acute and chronic cold exposure. Metabolite profiling reveals extensive temperature-dependent changes in the BAT metabolome and transcriptome upon cold adaptation, discovering unexpected metabolite markers of thermogenesis, including increased N-acetyl-amino acid production. Time-course stable isotope tracing further reveals rapid incorporation of glucose carbons into glycolysis and TCA cycle, as well as several auxiliary pathways, including NADPH, nucleotide, and phospholipid synthesis pathways. Gene expression differences inconsistently predict glucose fluxes, indicating that posttranscriptional mechanisms also govern glucose utilization. Surprisingly, BAT swiftly generates fatty acids and acyl-carnitines from glucose, suggesting that lipids are rapidly synthesized and immediately oxidized. These data reveal versatility in BAT glucose utilization, highlighting the value of an integrative-omics approach to understanding organ metabolism.


Assuntos
Tecido Adiposo Marrom/metabolismo , Glucose/metabolismo , Marcação por Isótopo , Aminoácidos/metabolismo , Animais , Ciclo do Ácido Cítrico/genética , Temperatura Baixa , Ácidos Graxos/metabolismo , Glicólise/genética , Metaboloma/genética , Camundongos Endogâmicos C57BL , Oxirredução , Fosfatidilgliceróis/metabolismo , Transcriptoma/genética
3.
Cell Rep ; 33(1): 108223, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027655

RESUMO

Overweight and obesity are associated with type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and cancer, but all fat is not equal, as storing excess lipid in subcutaneous white adipose tissue (SWAT) is more metabolically favorable than in visceral fat. Here, we uncover a critical role for mTORC2 in setting SWAT lipid handling capacity. We find that subcutaneous white preadipocytes differentiating without the essential mTORC2 subunit Rictor upregulate mature adipocyte markers but develop a striking lipid storage defect resulting in smaller adipocytes, reduced tissue size, lipid re-distribution to visceral and brown fat, and sex-distinct effects on systemic metabolic fitness. Mechanistically, mTORC2 promotes transcriptional upregulation of select lipid metabolism genes controlled by PPARγ and ChREBP, including genes that control lipid uptake, synthesis, and degradation pathways as well as Akt2, which encodes a major mTORC2 substrate and insulin effector. Further exploring this pathway may uncover new strategies to improve insulin sensitivity.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Metabolismo dos Lipídeos/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Obesidade/fisiopatologia , Gordura Subcutânea/fisiopatologia , Animais , Humanos , Camundongos
4.
Diabetes ; 68(10): 2016-2023, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31391172

RESUMO

Impaired wound healing is a major complication of diabetes, and despite the associated risks, treatment strategies for diabetic wounds remain limited. This is due, in part, to an incomplete understanding of the underlying pathological mechanisms, including the effects of hyperglycemia on components of the extracellular matrix (ECM). In the current study, we explored whether the expression of thrombospondin 2 (TSP2), a matricellular protein with a demonstrated role in response to injury, was associated with delayed healing in diabetes. First, we found that TSP2 expression was elevated in diabetic mice and skin from patients with diabetes. Then, to determine the contribution of TSP2 to impaired healing in diabetes, we developed a novel diabetic TSP2-deficient model. Though the TSP2-deficient mice developed obesity and hyperglycemia comparable with diabetic control mice, they exhibited significantly improved healing, characterized by accelerated reepithelialization and increased granulation tissue formation, fibroblast migration, and blood vessel maturation. We further found that hyperglycemia increased TSP2 expression in fibroblasts, the major cellular source of TSP2 in wounds. Mechanistically, high glucose increased activation of the hexosamine pathway and nuclear factor-κB signaling to elevate TSP2 expression. Our studies demonstrate that hyperglycemia-induced TSP2 expression contributes to impaired healing in diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Pele/metabolismo , Trombospondinas/metabolismo , Cicatrização/fisiologia , Animais , Glicemia/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Trombospondinas/sangue , Trombospondinas/genética
5.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442424

RESUMO

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Assuntos
Adipócitos Marrons/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólise , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirtuínas/metabolismo , Adipócitos Marrons/citologia , Animais , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirtuínas/genética
7.
J Biol Chem ; 293(23): 9126-9136, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29588368

RESUMO

Circadian locomotor output cycles kaput (CLOCK) is a transcription factor that activates transcription of clock-controlled genes by heterodimerizing with BMAL1 and binding to E-box elements on DNA. Although several phosphorylation sites on CLOCK have already been identified, this study characterizes a novel phosphorylation site at serine 845 (Ser-836 in humans). Here, we show that CLOCK is a novel AKT substrate in vitro and in cells, and this phosphorylation site is a negative regulator of CLOCK nuclear localization by acting as a binding site for 14-3-3 proteins. To examine the role of CLOCK phosphorylation in vivo, ClockS845A knockin mice were generated using CRISPR/Cas9 technology. ClockS845A mice are essentially normal with normal central circadian rhythms and hemodynamics. However, examination of core circadian gene expression from peripheral tissues demonstrated that ClockS845A mice have diminished expression of Per2, Reverba, Dbp, and Npas2 in skeletal muscle and Per2, Reverba, Dbp, Per1, Rora, and Npas2 in the liver during the circadian cycle. The reduction in Dbp levels is associated with reduced H3K9ac at E-boxes where CLOCK binds despite no change in total CLOCK levels. Thus, CLOCK phosphorylation by AKT on Ser-845 regulates its nuclear translocation and the expression levels of certain core circadian genes in insulin-sensitive tissues.


Assuntos
Proteínas CLOCK/metabolismo , Ritmo Circadiano , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Nucléolo Celular/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fosforilação , Especificidade por Substrato
8.
J Biol Rhythms ; 32(3): 212-221, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28452287

RESUMO

The AKT signaling pathway is important for circadian rhythms in mammals and flies ( Drosophila). However, AKT signaling in mammals is more complicated since there are 3 isoforms of AKT, each performing slightly different functions. Here we study the most ubiquitous AKT isoform, Akt1, and its role at the organismal level in the central and vascular peripheral clocks. Akt1-/- mice exhibit relatively normal behavioral rhythms with only minor differences in circadian gene expression in the liver and heart. However, circadian gene expression in the Akt1-/- aorta, compared with control aorta, follows a distinct pattern. In the Akt1-/- aorta, positive regulators of circadian transcription have lower amplitude rhythms and peak earlier in the day, and negative circadian regulators are expressed at higher amplitudes and peak later in the day. In endothelial cells, negative circadian regulators exhibit an increased amplitude of expression, while the positive circadian regulators are arrhythmic with a decreased amplitude of expression. This indicates that Akt1 conditions the normal circadian rhythm in the vasculature more so than in other peripheral tissues where other AKT isoforms or kinases might be important for daily rhythms.


Assuntos
Ritmo Circadiano/genética , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Aorta/metabolismo , Células Endoteliais/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
9.
Arterioscler Thromb Vasc Biol ; 36(2): 370-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715683

RESUMO

OBJECTIVE: Palmitoylation, the reversible addition of the lipid palmitate to a cysteine, can alter protein localization, stability, and function. The ZDHHC family of protein acyl transferases catalyzes palmitoylation of numerous proteins. The role of ZDHHC enzymes in intact tissue and in vivo is largely unknown. Herein, we characterize vascular functions in a mouse that expresses a nonfunctional ZDHHC21 (F233Δ). APPROACH AND RESULTS: Physiological studies of isolated aortae and mesenteric arteries from F233Δ mice revealed an unexpected defect in responsiveness to phenylephrine, an α1 adrenergic receptor agonist. In vivo, F233Δ mice displayed a blunted response to infusion of phenylephrine, and they were found to have elevated catecholamine levels and elevated vascular α1 adrenergic receptor gene expression. Telemetry studies showed that the F233Δ mice were tachycardic and hypotensive at baseline, consistent with diminished vascular tone. In biochemical studies, ZDHHC21 was shown to palmitoylate the α1D adrenoceptor and to interact with it in a molecular complex, thus suggesting a possible molecular mechanism by which the receptor can be regulated by ZDHHC21. CONCLUSIONS: Together, the data support a model in which ZDHHC21 F233Δ diminishes the function of vascular α1 adrenergic receptors, leading to reduced vascular tone, which manifests in vivo as hypotension and tachycardia. This is to our knowledge the first demonstration of a ZDHHC isoform affecting vascular function in vivo and identifies a novel molecular mode of regulation of vascular tone and blood pressure.


Assuntos
Aciltransferases/metabolismo , Aorta/enzimologia , Hemodinâmica , Artérias Mesentéricas/enzimologia , Receptores Adrenérgicos alfa 1/metabolismo , Aciltransferases/genética , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Pressão Sanguínea , Relação Dose-Resposta a Droga , Epinefrina/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Genótipo , Células HEK293 , Frequência Cardíaca , Hemodinâmica/efeitos dos fármacos , Humanos , Hipotensão/enzimologia , Hipotensão/genética , Hipotensão/fisiopatologia , Lipoilação , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Norepinefrina/metabolismo , Fenótipo , Fenilefrina/farmacologia , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/genética , Transdução de Sinais , Taquicardia/enzimologia , Taquicardia/genética , Taquicardia/fisiopatologia , Fatores de Tempo , Transfecção , Vasoconstrição
10.
Proc Natl Acad Sci U S A ; 112(41): 12812-7, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417068

RESUMO

The contribution of endothelial-derived miR-17∼92 to ischemia-induced arteriogenesis has not been investigated in an in vivo model. In the present study, we demonstrate a critical role for the endothelial-derived miR-17∼92 cluster in shaping physiological and ischemia-triggered arteriogenesis. Endothelial-specific deletion of miR-17∼92 results in an increase in collateral density limbs and hearts and in ischemic limbs compared with control mice, and consequently improves blood flow recovery. Individual cluster components positively or negatively regulate endothelial cell (EC) functions in vitro, and, remarkably, ECs lacking the cluster spontaneously form cords in a manner rescued by miR-17a, -18a, and -19a. Using both in vitro and in vivo analyses, we identified FZD4 and LRP6 as targets of miR-19a/b. Both of these targets were up-regulated in 17∼92 KO ECs compared with control ECs, and both were shown to be targeted by miR-19 using luciferase assays. We demonstrate that miR-19a negatively regulates FZD4, its coreceptor LRP6, and WNT signaling, and that antagonism of miR-19a/b in aged mice improves blood flow recovery after ischemia and reduces repression of these targets. Collectively, these data provide insights into miRNA regulation of arterialization and highlight the importance of vascular WNT signaling in maintaining arterial blood flow.


Assuntos
Receptores Frizzled/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , MicroRNAs/metabolismo , Família Multigênica/fisiologia , Neovascularização Fisiológica/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Receptores Frizzled/genética , Isquemia/genética , Isquemia/metabolismo , Isquemia/patologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética
11.
Sci Signal ; 8(376): ra44, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25969542

RESUMO

Vascular smooth muscle cells (VSMCs) undergo transcriptionally regulated reversible differentiation in growing and injured blood vessels. This dedifferentiation also contributes to VSMC hyperplasia after vascular injury, including that caused by angioplasty and stenting. Stents provide mechanical support and can contain and release rapamycin, an inhibitor of the mechanistic target of rapamycin complex 1 (mTORC1). Rapamycin suppresses VSMC hyperplasia and promotes VSMC differentiation. We report that rapamycin-induced differentiation of VSMCs required the transcription factor GATA-6. Inhibition of mTORC1 stabilized GATA-6 and promoted the nuclear accumulation of GATA-6, its binding to DNA, its transactivation of promoters encoding contractile proteins, and its inhibition of proliferation. These effects were mediated by phosphorylation of GATA-6 at Ser(290), potentially by Akt2, a kinase that is activated in VSMCs when mTORC1 is inhibited. Rapamycin induced phosphorylation of GATA-6 in wild-type mice, but not in Akt2(-/-) mice. Intimal hyperplasia after arterial injury was greater in Akt2(-/-) mice than in wild-type mice, and the exacerbated response in Akt2(-/-) mice was rescued to a greater extent by local overexpression of the wild-type or phosphomimetic (S290D) mutant GATA-6 than by that of the phosphorylation-deficient (S290A) mutant. Our data indicated that GATA-6 and Akt2 are involved in the mTORC1-mediated regulation of VSMC proliferation and differentiation. Identifying the downstream transcriptional targets of mTORC1 may provide cell type-specific drug targets to combat cardiovascular diseases associated with excessive proliferation of VSMCs.


Assuntos
Diferenciação Celular/fisiologia , Fator de Transcrição GATA6/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proliferação de Células/fisiologia , Fator de Transcrição GATA6/genética , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Proteínas Musculares/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética
12.
Proc Natl Acad Sci U S A ; 111(35): 12865-70, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136137

RESUMO

The PI3K/Akt pathway is necessary for several key endothelial cell (EC) functions, including cell growth, migration, survival, and vascular tone. However, existing literature supports the idea that Akt can be either pro- or antiangiogenic, possibly due to compensation by multiple isoforms in the EC when a single isoform is deleted. Thus, biochemical, genetic, and proteomic studies were conducted to examine isoform-substrate specificity for Akt1 vs. Akt2. In vitro, Akt1 preferentially phosphorylates endothelial nitric oxide synthase (eNOS) and promotes NO release, whereas nonphysiological overexpression of Akt2 can bypass the loss of Akt1. Conditional deletion of Akt1 in the EC, in the absence or presence of Akt2, retards retinal angiogenesis, implying that Akt1 exerts a nonredundant function during physiological angiogenesis. Finally, proteomic analysis of Akt substrates isolated from Akt1- or Akt2-deficient ECs documents that phosphorylation of multiple Akt substrates regulating angiogenic signaling is reduced in Akt1-deficient, but not Akt2-deficient, ECs, including eNOS and Forkhead box proteins. Therefore, Akt1 promotes angiogenesis largely due to phosphorylation and regulation of important downstream effectors that promote aspects of angiogenic signaling.


Assuntos
Endotélio Vascular/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vasos Retinianos/metabolismo , Animais , Linhagem Celular Transformada , Pulmão/irrigação sanguínea , Pulmão/citologia , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , Compostos de Mostarda Nitrogenada/metabolismo , Fosforilação/fisiologia , Proteômica , Proteínas Proto-Oncogênicas c-akt/genética , Retina/patologia , Vasos Retinianos/patologia , Transdução de Sinais/fisiologia , Especificidade por Substrato
13.
Development ; 141(7): 1465-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24598168

RESUMO

Here we show that dynamin 2 (Dnm2) is essential for angiogenesis in vitro and in vivo. In cultured endothelial cells lacking Dnm2, vascular endothelial growth factor (VEGF) signaling and receptor levels are augmented whereas cell migration and morphogenesis are impaired. Mechanistically, the loss of Dnm2 increases focal adhesion size and the surface levels of multiple integrins and reduces the activation state of ß1 integrin. In vivo, the constitutive or inducible loss of Dnm2 in endothelium impairs branching morphogenesis and promotes the accumulation of ß1 integrin at sites of failed angiogenic sprouting. Collectively, our data show that Dnm2 uncouples VEGF signaling from function and coordinates the endocytic turnover of integrins in a manner that is crucially important for angiogenesis in vitro and in vivo.


Assuntos
Vasos Sanguíneos/embriologia , Dinamina II/fisiologia , Endocitose/genética , Integrinas/metabolismo , Neovascularização Fisiológica/genética , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Animais Recém-Nascidos , Vasos Sanguíneos/crescimento & desenvolvimento , Células Cultivadas , Dinamina II/genética , Embrião de Mamíferos , Feminino , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia
14.
Am J Bot ; 99(2): 383-96, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22301896

RESUMO

PREMISE OF THE STUDY: RNA-seq analysis of plant transcriptomes poses unique challenges due to the highly duplicated nature of plant genomes. We address these challenges in the context of recently formed polyploid species and detail an RNA-seq experiment comparing the leaf transcriptome profile of an allopolyploid relative of soybean with the diploid species that contributed its homoeologous genomes. METHODS: RNA-seq reads were obtained from the three species and were aligned against the genome sequence of Glycine max. Transcript levels were estimated for each gene, relative contributions of polyploidy-duplicated loci (homoeologues) in the tetraploid were identified, and comparisons of transcript profiles and individual genes were used to analyze the regulation of transcript levels. KEY RESULTS: We present a novel metric developed to address issues arising from high degrees of gene space duplication and a method for dissecting a gene's measured transcript level in a polyploid species into the relative contribution of its homoeologues. We identify the gene family likely contributing to differences in photosynthetic rate between the allotetraploid and its progenitors and show that the tetraploid appears to be using the "redundant" gene copies in novel ways. CONCLUSIONS: Given the prevalence of polyploidy events in plants, we believe many of the approaches developed here to be applicable, and often necessary, in most plant RNA-seq experiments. The deep sampling provided by RNA-seq allows us to dissect the genetic underpinnings of specific phenotypes as well as examine complex interactions within polyploid genomes.


Assuntos
Diploide , Regulação da Expressão Gênica de Plantas , Análise de Sequência de RNA/métodos , Tetraploidia , Transcriptoma , Sequência de Bases , Clorofila/análise , Simulação por Computador , Genes de Plantas , Modelos Genéticos , Fenótipo , Fotossíntese/genética , Folhas de Planta/genética , RNA de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , /genética
15.
Am J Bot ; 99(1): 55-67, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22210840

RESUMO

PREMISE OF THE STUDY: Previous studies have shown that polyploidy has pronounced effects on photosynthesis. Most of these studies have focused on synthetic or recently formed autopolyploids, and comparatively little is known about the integrated effects of natural allopolyploidy, which involves hybridity and genome doubling and often incorporates multiple genotypes through recurrent origins and lineage recombination. METHODS: Glycine dolichocarpa (designated T2) is a natural allotetraploid with multiple origins. We quantified 21 anatomical, biochemical, and physiological phenotypes relating to photosynthesis in T2 and its diploid progenitors, G. tomentella (D3) and G. syndetika (D4). To assess how direction of cross affects these phenotypes, we included three T2 accessions having D3-like plastids (T2(D3)) and two accessions having D4-like plastids (T2(D4)). KEY RESULTS: T2 accessions were transgressive (more extreme than any diploid accession) for 17 of 21 phenotypes, and species means differed significantly in T2 vs. both progenitors for four of 21 phenotypes (higher for guard cell length, electron transport capacity [J(max)] per palisade cell, and J(max) per mesophyll cell; lower for palisade cells per unit leaf area). Within T2, four of 21 parameters differed significantly between T2(D3) and T2(D4) (palisade cell volume; chloroplast number and volume per unit leaf area; and J(max) per unit leaf area). CONCLUSIONS: T2 is characterized by transgressive photosynthesis-related phenotypes (including an ca. 2-fold increase in J(max) per cell), as well as by significant intraspecies variation correlating with plastid type. These data indicate prominent roles for both nucleotypic effects and cytoplasmic factors in photosynthetic responses to allopolyploidy.


Assuntos
Fabaceae/fisiologia , Fotossíntese/fisiologia , Poliploidia , Contagem de Células , Tamanho Celular , Quimera , Clorofila/metabolismo , Cloroplastos/fisiologia , DNA de Plantas/genética , Transporte de Elétrons , Fabaceae/citologia , Fabaceae/genética , Fabaceae/metabolismo , Tamanho do Genoma , Células do Mesofilo/fisiologia , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Epiderme Vegetal/fisiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Seleção Genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...